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Abstract—Identification of precancerous polyps during routine
colonoscopy screenings is vital for their excision, lowering the
risk of developing colorectal cancer. Advanced deep learning al-
gorithms enable precise adenoma classification and stratification,
improving risk assessment accuracy and enabling personalized
surveillance protocols that optimize patient outcomes. Ultra-
Light Med-Vision Mamba, a state-space-based model (SSM), has
excelled in modeling long- and short-range dependencies and
image generalization, critical factors for analyzing whole slide
images. Furthermore, UltraLight Med-Vision Mamba’s efficient
architecture offers advantages in both computational speed and
scalability, making it a promising tool for real-time clinical
deployment.

Index Terms—Vision Mamba, state space models, medical
image classification, biomedical, adenomas, cancer risk

I. INTRODUCTION

Colorectal cancer (CRC) is a major global health challenge;
in the United States, it’s the third most common cause of
cancer and is the second leading cause of cancer-related death
[1]. CRC frequently originates from colonic polyps, which
are raised protrusions of colonic mucosa of epithelial origin,
broadly categorized as adenomatous and serrated. Adenoma-
tous polyps are due to neoplastic proliferation of glands and
are a well-established, frequent precursor lesion to CRC [2].
For decades, CRC has been thought to arise through a tradi-
tional adenoma-carcinoma pathway [3]], and screening guide-
lines have been established to detect precancerous lesions. The
US Preventive Services Task Force recommendations show
a substantial benefit to screening asymptomatic individuals
starting at age 50 and a moderate benefit starting at age 45 [4].
Tubular adenomas, a subtype within the adenomatous polyps
category, are one of such precancerous lesions, and are the
primary focus of this discussion.

Tubular adenomas can be classified into two categories:
those having low-grade dysplasia and those having high-grade
dysplasia. The presence of high-grade dysplasia is a known
risk factor for the development of CRC [5]] and represents
an advanced stage along the adenoma-carcinoma continuum.
Despite prophylactic screening efforts, accurately assessing the
malignant potential of low-grade tubular adenomas remains a
clinical challenge. Traditional histopathological examination is
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based solely on visual assessment; the naked eye can face lim-
itations in identifying subtle morphological features associated
with patients’ long-term risks of developing subsequent CRC.

The advent of digital pathology has enabled the generation
of high-resolution whole slide images (WSIs). Combining
WSIs with advancements in artificial intelligence (AI) has led
to powerful new tools augmenting diagnostic accuracy and ef-
ficiency in pathology. This synergy between digital pathology
and Al promises to improve the sensitivity of risk stratification
and other aspects of clinical care that are impossible with
traditional light microscopic examination alone [6].

Bridging digital pathology alongside breakthroughs in deep
learning offers unprecedented opportunities for objective and
quantitative histological analysis. Deep learning models can
now analyze, extract, and learn complex patterns directly
from image data, identifying subtle morphological patterns
and features imperceptible through visual assessment [6]. This
study implements Vision Mamba, [7], a novel State Space
Model (SSM) [8]] architecture, to analyze intricate histolog-
ical patterns within WSIs of low-grade tubular adenomas to
identify subtle indicators associated with subsequent colorectal
cancer risk. The model also leverages an ultra-light architec-
ture preventing parameter explosion, making it a promising
tool for real-time clinical deployment [8]].

II. METHODOLOGY

The UltraLight Med-Vision Mamba model [7], [9] adopts
an architectural framework akin to convolutional neural net-
works (CNNs), but with a key distinction: instead of relying
on convolutional blocks as its primary feature extractors, it
employs Parallel Vision Mamba (PVM) layers. The overall
architecture comprises six layers, with the number of channels
configured as [8, 16, 24, 32, 48, 64] as shown in Fig. |1} The ini-
tial three layers utilize standard convolutional blocks to extract
shallow features, while the deeper layers (layers 4 through
6) incorporate PVM layers to capture more complex and nu-
anced features. The extracted features from three convolutional
blocks and two PVM layers are fed into SCAB (spatial and
channel attention bridge) module. Adaptive average pooling
is performed on feature maps acquired from SCAB and the
final PVM layer (stage 6) to standardize spatial dimensions of
the feature maps. The pooled features are then concatenated to
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Fig. 1: Architectural structure of UltraLight Med-Vision Mamba model for image classification task.

Fig. 2: a) PVM layer in UltraLight Med-Vision Mamba b) Mamba module.
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accumulate and retain the relevant information. The classifica-
tion head first flattens the high-dimensional feature maps into
a one-dimensional vector, effectively aggregating the spatially
distributed information extracted by the preceding layers. This
flattened vector is then passed through fully connected (dense)
layers, which serve to map the learned feature representations
to the final output space. In this case of colorectal adenoma
classification, this typically corresponds to a set of class
probabilities, enabling the model to assign a likelihood score
to each potential category of control and cancer group.

The Parallel Vision Mamba (PVM) layer [7], [9], as shown
in Fig.[2] (a), is also known as the PVM module. It incorporates
Mamba blocks with residual connections from the input to
the output of Mamba blocks to enhance the model’s ability
to capture complex spatial relationships. The input first under-
goes layer normalization, after which the feature maps are split
into four distinct branches, each with a designated number of
channels. These branches are processed independently through
the Mamba mechanism. The outputs from the Mamba blocks
are then combined with residual connections from the original
inputs, along with an adjustment factor to optimize learning.
The resulting feature maps are concatenated to form four
unified feature maps with specific channel dimensions. These
concatenated outputs are subsequently normalized again and
passed through a projection layer. By processing features in
parallel across multiple branches, the PVM module is able to
extract multiscale and intricate feature representations using
varying kernel sizes. Moreover, this design efficiently reduces
the number of parameters by preserving the same recep-
tive field, thereby mitigating the parameter growth typically
associated with increasing channel dimensions—an important
consideration, as the parameter count in Mamba layers is
highly sensitive to input channel size.

The model performance is further improved by the addition
of SCAB module, also known as the Spatial and Channel
Attention Bridge [7], [10], for feature propagation. Spatial
attention bridge consists of max-pooling, average pooling, and
extended convolution of shared weights. Channel attention
bridge includes fully connected layers (FCL), global average
pooling (GAP), concatenation, and sigmoid activation func-
tion. The SCAB module enhances the sensitivity, ability of
the model to converge, and fusion of multi-scale features of
different scales [7]], [9].

III. TRAINING AND EXPERIMENTAL RESULTS
A. Training Method

The baseline for the experiment was established by training
all models—Vision Transformer (ViT), swin Transformer,
and UltraLight Med-Vision Mamba—for 100 epochs using
Stochastic Gradient Descent (SGD) with a momentum of
0.9 and an initial learning rate of 0.001. UltraLight Med-
Vision Mamba was further fine-tuned with a learning rate
range of 0.0001 to 0.05 and trained for 300 epochs. Binary
Crossentropy was used as the loss function. The training
strategy incorporated the OneCycle Learning Rate (OneCy-
cleLR) scheduler and Stochastic Weight Averaging (SWA) to

stabilize training. The experiments were implemented using
the PyTorch framework in Python on a NVIDIA GeForce RTX
Titan GPU.

B. Transformer Based Models

Vision Transformer [11], also known as ViT, divides the
input image into fixed-size patches, flattens them, and treats
them like tokens in a sequence similar to Natural language
Processing (NLP) [12]. The patches are then processed using
multi-self-attention-heads to capture global context. While
powerful, ViT requires large datasets and high computational
resources.

Swin Transformer |[13] also known as Shifted Window
Transformer is a more efficient variant of Transformers that
hierarchically processes images using non-overlapping local
windows. It introduces shifting window mechanism that allows
cross-window connections while maintaining computational
efficiency. This makes the Swin Transformer more scalable
for smaller datasets and dense prediction tasks than ViT.

C. Model Parameters

The comparison between the number of model parameters
for the three architectures is presented in Table [[ ViT has the
highest number of parameters at 7,398, 785, indicating large
model size and computational overhead. Swin Transformer,
with its heirarchical architectural structure, is designed for
more efficient computation significantly reduces the model
parameter count to 598,099. Lastly, UltraLight Med-Vision
Mamba, dramatically reduces the model parameter to only
49, 641—making it the most lightweight model among the
three. This suggests that UltraLight Med-Vision Mamba is
highly optimized for efficiency, better trade-off between per-
formance and computational cost, especially for the real-time
clinical deployment.

TABLE I: Model parameter comparison for ViT, Swin Trans-
former and UltraLight Med-Vision Mamba.

Model Model Parameters
ViT 7,398,785
Swin Transformer 598,099
UltraLight Med-Vision Mamba 49,641

D. Dataset

The original whole slide images (WSIs) were tiled at 1024
x 1024 pixel resolution, with 3 color channels and then resized
into smaller tiles of 224 x 224 pixels with 3 color channels
for model input as shown in Fig. 3] During preprocessing,
a region-of-interest (ROI) filter was applied to determine
whether each tile should be retained or discarded. All au-
tomatically generated ROIs were subsequently subjected to
visual inspection to verify annotation accuracy. Tiles exhibit-
ing quality issues—such as tissue folding, edge artifacts, or
poor scan resolution—were excluded through manual review
of WSI patch location maps. After this curation process, a
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Fig. 3: Sample images of the dataset used: case group (left)
and control group (right).

total of 176,945 high-quality tiles were retained in each class.
The final dataset was divided into training (70%), validation
(15%), and testing (15%) subsets.

1) Data Management Strategies: Patients without known
high-risk clinical factors for CRC, in which low-grade tubu-
lar adenomas were identified during screening colonoscopy,
were included in the study. A total of 81 patients (41 male,
40 female), ranging in age from 54-95 years (average 70),
underwent at least one screening colonoscopy with associ-
ated biopsies demonstrating tubular adenomas with low-grade
dysplasia; no biopsies showed any histologic features that
were indicative of high-risk progression to CRC. Patients were
stratified into two cohorts: a precancer group and a control
group. The case group consisted of individuals who subse-
quently developed CRC following screening colonoscopies
in which low-grade tubular adenomas were identified. The
control group comprised of individuals with no history of
CRC despite having low-grade adenomas detected on one or
more screening procedures. Compared to the case group, the
control group had a greater average number of biopsies and
a longer mean screening interval. On average, patients in the
case group were 6.86 years older than those in the control
group. Histologic slides from both groups containing low-
grade tubular adenomas were digitized using the same Leica
Aperio AT2 whole slide scanner to generate image data for
this study.

E. Results

Quantitative comparisons—Accuracy, F1, Precision and
Recall—for colorectal adenoma classification using ViT, Swin
Transformer, and UltraLight Med-Vision Mamba are sum-
marized in Table [ While the transformer-based models
(ViT and Swin Transformer) primarily utilize self-attention
mechanisms to model long-range dependencies across image
patches achieved comparable performance with accuracies
of 89.84% and 89.52% respectively. In contrast, UltraLight
Med-Vision Mamba employs State Space Models (SSMs),
which process sequences bidirectionally. This approach allows
UltraLight Med-Vision Mamba to achieve 97.34% with higher
F1, Precision and Recall, indicating balanced and robust
performance. Its ability to better capture subtle dependencies

within high-resolution images offered it a distinct advantage.
The incorporation of the SCAB module enhanced the feature
propagation required for the image classification task. As the
SSM models the hidden states over time, it offers the ability
to excel in modeling long- and short-range dependencies.

TABLE 1II: Quantitative performances of ViT, Swin Trans-
former and UltraLight Med-Vision Mamba.

Model Accuracy F1 Precision  Recall
Vision Transformer 89.84% 0.8920 0.9519 0.8392
Swin Transformer 89.52% 0.8878 0.9548 0.8296
UltraLight Med-Vision Mamba 97.34% 0.9733 0.9780 0.9686

IV. DISCUSSION

This section discusses the limitations of the model’s ability
to generalize and interpret in colorectal histopathology.
The misclassified predictions from each of the three
architectures—UltraLight Med-Vision Mamba, ViT, and Swin
Transformer—are shown in Figures [4] to [6] This illustrates the
visual and histological features that may have contributed to
incorrect classifications.

Predicted outputs of UltraLight Med-Vision Mamba: In
Fig. M (a), the patch clearly demonstrates features of tubular
adenoma: nuclear pseudostratification, hyperchromatic elon-
gated nuclei, and goblet cell depletion. Despite the cytological
hallmarks being present, the model misclassified this region
as class control. This may perhaps reflect the model’s limited
sensitivity to focal dysplasia, particularly in areas with mixed
histology, where adjacent non-dysplastic crypts can mask
subtle neoplastic changes. These results may highlight the need
for enhanced model training with finer-grained annotations and
increased representation of early or borderline dysplasia cases.

In Fig. [ (b), the region is histologically consistent with
slight adenomatous changes from the control group and
was misclassified by the model as a tubular adenoma that
progressed to CRC (case group). The crypts are well-formed,
with preserved spacing, abundant goblet cells, and basally
aligned nuclei, lacking pseudostratification or any cytologic
atypia that may be indicative of a high-grade dysplasia, or any
other signs of progression to CRC. This false positive may
be due to subtle visual cues such as epithelial overcrowding
near the tissue edge or darker nuclear staining, which the
model may overfit during training.

Predicted outputs of Vision Transformer: The Fig. |3 (a) is
an image from the case group that was misclassified with a
control group prediction. The model’s benign interpretation
was likely influenced by confounding factors such as tangential
plane of sectioning and the absence of pronounced pseudos-
tratification. The preserved goblet cells and rounded glandular
contours may have biased the classifier towards a benign
interpretation. This suggests that architectural orientation and
crypt profile may significantly influence model sensitivity to
dysplasia.
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Fig. 4: Mismatched predicted outputs of UltraLight Med-
Vision Mamba.
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Fig. 5: Mismatched predicted outputs of Vision Transformer.
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Fig. 6: Mismatched predicted outputs of Swin Transformer.

Figure [5] (b) was expected to be classified as control, but
was misclassified as case by the model. The likely reason lies
in the cytologic pseudostratification observed in the glandular
epithelium, which mimics low-grade dysplasia. The elongated
nuclei aligned perpendicularly to the basement membrane, as
well as the increase in nuclear crowding, may have falsely
signaled dysplastic changes in the classifier.

Predicted outputs of Swin Transformer:

A false negative occurred for Fig. [f] (a), which represents
a tubular adenoma from the case group, perhaps due to its
bland architecture and relatively preserved nuclear polarity.

While mild nuclear elongation as well as pseudostratification
are indeed present, the retention of goblet cells and lack of
architectural complexity may have masked dysplastic cues
from the classifier. This highlights the challenge of detecting
low-grade adenomas that closely mimic normal mucosa at a
higher magnification.

A false positive classification was made for Fig. 6| (b),
originally belonging in the control group. The classifier likely
over-weighted features of mild atypia associated with inflam-
mation due to an influx of lymphocytes and plasma cells in
one of the colonic layers. In the real-life practice of pathology,
it is common for these reactive epithelial changes to mimic
dysplastic characteristics from the case group, leading to er-
roneous prediction(s). This case highlights a critical challenge
for classification of histopathological specimens: discerning
true dysplastic (and in some applications, neoplastic) changes
from a wide range of confounding inflammatory and reactive
processes.

V. CONCLUSION

This study demonstrates the potential of the UltraLight
Med-Vision Mamba architecture for improving the classifi-
cation of low-grade colorectal adenomas from whole slide
images. By effectively modeling long and short-range de-
pendencies and complex spatial relationships through Parallel
UltraLight Med-Vision Mamba layers, the network captures
subtle histological patterns by enhancing feature extraction
that conventional methods may overlook.
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